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1 Express
2x + 3

(x + 3)(x2 + 9) in partial fractions. [5]

2 A curve has equation y = x2 − 6x − 5

x − 2
.

(i) Find the equations of the asymptotes. [3]

(ii) Show that y can take all real values. [4]

3 It is given that F(x) = 2 + ln x. The iteration xn+1 = F(xn) is to be used to find a root, α, of the equation
x = 2 + ln x.

(i) Taking x1 = 3.1, find x2 and x3, giving your answers correct to 5 decimal places. [2]

(ii) The error en is defined by en = α − xn. Given that α = 3.146 19, correct to 5 decimal places, use

the values of e2 and e3 to make an estimate of F ′(α) correct to 3 decimal places. State the true

value of F ′(α) correct to 4 decimal places. [3]

(iii) Illustrate the iteration by drawing a sketch of y = x and y = F(x), showing how the values of xn

approach α. State whether the convergence is of the ‘staircase’ or ‘cobweb’ type. [3]

4 A curve C has the cartesian equation x3 + y3 = axy, where x ≥ 0, y ≥ 0 and a > 0.

(i) Express the polar equation of C in the form r = f(θ) and state the limits between which θ lies.
[3]

The line θ = α is a line of symmetry of C.

(ii) Find and simplify an expression for f(1
2
π − θ) and hence explain why α = 1

4
π. [3]

(iii) Find the value of r when θ = 1
4
π. [1]

(iv) Sketch the curve C. [2]

5 (i) Prove that, if y = sin−1 x, then
dy

dx
= 1√

1 − x2
. [3]

(ii) Find the Maclaurin series for sin−1 x, up to and including the term in x3. [5]

(iii) Use the result of part (ii) and the Maclaurin series for ln(1 + x) to find the Maclaurin series for(sin−1 x) ln(1 + x), up to and including the term in x4. [4]

6 It is given that In = $ 1

0

xn(1 − x)3
2 dx, for n ≥ 0.

(i) Show that In = 2n

2n + 5
In−1, for n ≥ 1. [6]

(ii) Hence find the exact value of I3. [4]
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7 (i) Sketch the graph of y = tanh x and state the value of the gradient when x = 0. On the same axes,

sketch the graph of y = tanh−1 x. Label each curve and give the equations of the asymptotes. [4]

(ii) Find $ k

0

tanh x dx, where k > 0. [2]

(iii) Deduce, or show otherwise, that $ tanh k

0

tanh−1 x dx = k tanh k − ln(cosh k). [4]

8 (i) Use the substitution x = cosh2 u to find % √
x

x − 1
dx, giving your answer in the form

f(x) + ln(g(x)). [7]

O

y

x
1 2 3 4

(ii) Hence calculate the exact area of the region between the curve y = √
x

x − 1
, the x-axis and the

lines x = 1 and x = 4 (see diagram). [1]

(iii) What can you say about the volume of the solid of revolution obtained when the region defined
in part (ii) is rotated completely about the x-axis? Justify your answer. [3]
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