

ADVANCED GCE

Further Pure Mathematics 2

Candidates answer on the answer booklet.

OCR supplied materials:

- 8 page answer booklet
- (sent with general stationery)
- List of Formulae (MF1)

Other materials required:

• Scientific or graphical calculator

Monday 20 June 2011 Morning

4726

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet. Please write clearly and in capital letters.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a scientific or graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of 4 pages. Any blank pages are indicated.

- 1 Express $\frac{2x+3}{(x+3)(x^2+9)}$ in partial fractions.
- 2 A curve has equation $y = \frac{x^2 6x 5}{x 2}$.
 - (i) Find the equations of the asymptotes.
 - (ii) Show that y can take all real values.
- 3 It is given that $F(x) = 2 + \ln x$. The iteration $x_{n+1} = F(x_n)$ is to be used to find a root, α , of the equation $x = 2 + \ln x$.
 - (i) Taking $x_1 = 3.1$, find x_2 and x_3 , giving your answers correct to 5 decimal places. [2]
 - (ii) The error e_n is defined by $e_n = \alpha x_n$. Given that $\alpha = 3.146\,19$, correct to 5 decimal places, use the values of e_2 and e_3 to make an estimate of F'(α) correct to 3 decimal places. State the true value of F'(α) correct to 4 decimal places. [3]
 - (iii) Illustrate the iteration by drawing a sketch of y = x and y = F(x), showing how the values of x_n approach α . State whether the convergence is of the 'staircase' or 'cobweb' type. [3]
- 4 A curve *C* has the cartesian equation $x^3 + y^3 = axy$, where $x \ge 0$, $y \ge 0$ and a > 0.
 - (i) Express the polar equation of *C* in the form $r = f(\theta)$ and state the limits between which θ lies. [3]

The line $\theta = \alpha$ is a line of symmetry of *C*.

- (ii) Find and simplify an expression for $f(\frac{1}{2}\pi \theta)$ and hence explain why $\alpha = \frac{1}{4}\pi$. [3]
- (iii) Find the value of r when $\theta = \frac{1}{4}\pi$. [1]
- (iv) Sketch the curve C. [2]

5 (i) Prove that, if
$$y = \sin^{-1} x$$
, then $\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$. [3]

- (ii) Find the Maclaurin series for $\sin^{-1} x$, up to and including the term in x^3 . [5]
- (iii) Use the result of part (ii) and the Maclaurin series for $\ln(1 + x)$ to find the Maclaurin series for $(\sin^{-1} x) \ln(1 + x)$, up to and including the term in x^4 . [4]
- 6 It is given that $I_n = \int_0^1 x^n (1-x)^{\frac{3}{2}} dx$, for $n \ge 0$.
 - (i) Show that $I_n = \frac{2n}{2n+5}I_{n-1}$, for $n \ge 1$. [6]
 - (ii) Hence find the exact value of I_3 .

[3]

[4]

[5]

IJ

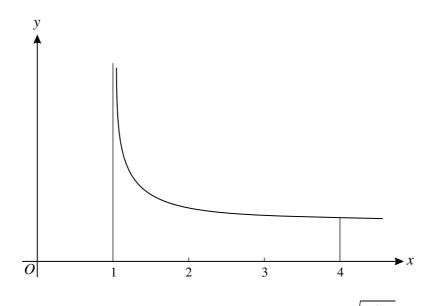
[4]

7 (i) Sketch the graph of $y = \tanh x$ and state the value of the gradient when x = 0. On the same axes, sketch the graph of $y = \tanh^{-1} x$. Label each curve and give the equations of the asymptotes. [4]

(ii) Find
$$\int_0^k \tanh x \, dx$$
, where $k > 0$. [2]

(iii) Deduce, or show otherwise, that
$$\int_{0}^{\tanh k} \tanh^{-1} x \, dx = k \tanh k - \ln(\cosh k).$$
 [4]

8 (i) Use the substitution $x = \cosh^2 u$ to find $\int \sqrt{\frac{x}{x-1}} \, dx$, giving your answer in the form $f(x) + \ln(g(x))$. [7]



- (ii) Hence calculate the exact area of the region between the curve $y = \sqrt{\frac{x}{x-1}}$, the x-axis and the lines x = 1 and x = 4 (see diagram). [1]
- (iii) What can you say about the volume of the solid of revolution obtained when the region defined in part (ii) is rotated completely about the *x*-axis? Justify your answer. [3]

1	$\frac{2x+3}{(x+3)(x^2+9)} = \frac{A}{x+3} + \frac{Bx+C}{x^2+9}$	B1	For correct form seen anywhere with letters or values
	$A = -\frac{1}{6}$	B1	For correct A (cover up or otherwise)
	$5 = 2x + 3 \equiv A(x^2 + 9) + (Bx + C)(x + 3)$	M1	For equating coefficients at least once.(or substituting values) into correct identity.
	$B = \frac{1}{6}, C = \frac{3}{2}$	A1	For correct <i>B</i> and <i>C</i>
	$\Rightarrow \frac{-1}{6(x+3)} + \frac{x+9}{6(x^2+9)}$	A1	For correct final statement cao, oe
		5	
2(i)	Asymptote $x = 2$	B1	For correct equation
	$y = x - 4 - \frac{13}{x - 2}$	M1	For dividing out (remainder not
	\Rightarrow asymptote $y = x - 4$		required)
		A1	For correct equation of asymptote
(;;)	METHOD 1	3	(ignore any extras)
(ii)	$x^{2} - (y+6)x + (2y-5) = 0$	M1	N.B. answer given For forming quadratic in <i>x</i>
	$b^{2} - 4ac (\geq 0) \Longrightarrow (y+6)^{2} - 4(2y-5) (\geq 0)$ $\Longrightarrow y^{2} + 4y + 56 (\geq 0)$	M1 A1	For considering discriminant For correct simplified expression in <i>y</i> soi
	$\Rightarrow (y+2)^2 + 52 \ge 0: \text{ this is true } \forall y$ So y takes all values	A1	For completing square (or equivalent) and correct conclusion www
	METHOD 2 $dy x^2 - 4x + 17$ OD 1 13	M1	For finding $\frac{dy}{dx}$ either by direct
	Obtain $\frac{dy}{dx} = \frac{x^2 - 4x + 17}{(x-2)^2}$ OR $1 + \frac{13}{(x-2)^2}$	A1	differentiation or dividing out first For correct expression oe.
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} \ge 1 \ \forall x,$	M1	For drawing a conclusion
	so y takes all values.	A1	For correct conclusion www
		4	
	Alternate scheme: Sketching graph Graph correct approaching asymptotes from both side Graph completely correct Explanation about no turning values	B1 B1 B1	A graph with no explanation can only score 2
	Correct conclusion	B1	

1

Mark Scheme

3(i)	$x_1 = 3.1 \implies x_2 = 3.13140,$	B1	For correct x_2
	$x_3 = 3.14148$	B1 2	For correct x_3
(ii)	$F'(\alpha) \approx \frac{e_3}{e_2} = \frac{0.00471}{0.01479} = 0.318 \ (0.31846)$	M1 A1	For dividing e_3 by e_2 For estimate of F'(α)
	$F'(\alpha) = \frac{1}{\alpha} = 0.3178 \ (0.31784)$	B1 3	For true F'(α) obtained from $\frac{d}{dx}(2 + \ln x)$ TMDP anywhere in (i) (ii) deduct 1
			once (but answers must round to given values or A0)
(iii)		B1 B1	For $y = x$ and $y = F(x)$ drawn, crossing as shown For lines drawn to illustrate iteration
	staircase	B1 3	(Min 2 horizontal and 2 vertical seen) For stating "staircase"

4(i)	$x = r\cos\theta, \ y = r\sin\theta$	M1	For substituting for <i>x</i> and <i>y</i>
	$\Rightarrow r = \frac{a\cos\theta\sin\theta}{\cos^3\theta + \sin^3\theta}$	A1	For correct equation oe (Must be $r = \dots$)
	for $0 \le \theta \le \frac{1}{2}\pi$	A1 3	For correct limits for θ (Condone <)
(ii)	$f\left(\frac{1}{2}\pi - \theta\right) = \frac{a\cos\left(\frac{1}{2}\pi - \theta\right)\sin\left(\frac{1}{2}\pi - \theta\right)}{\cos^3\left(\frac{1}{2}\pi - \theta\right) + \sin^3\left(\frac{1}{2}\pi - \theta\right)}$ $a\sin\theta\cos\theta$	M1	N.B. answer given For replacing θ by $\left(\frac{1}{2}\pi - \theta\right)$ in their $f(\theta)$
	$=\frac{a\sin\theta\cos\theta}{\sin^3\theta+\cos^3\theta}$	A1	For correct simplified form. (Must be convincing)
	$f(\theta) = f(\frac{1}{2}\pi - \theta) \Rightarrow \alpha = \frac{1}{4}\pi$	A1 3	For correct reason for $\alpha = \frac{1}{4}\pi$
(iii)	$r = \frac{a \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^3 + \left(\frac{1}{\sqrt{2}}\right)^3} = \frac{1}{2}\sqrt{2} a$	B1 1	For correct value of <i>r</i> . oe
(iv)		B1	Closed curve in 1st quadrant only, symmetrical about $\theta = \frac{1}{4}\pi$
		B1 2	Diagram showing $\theta = 0, \frac{1}{2}\pi$ tangential at <i>O</i>

		1	
5(i)	$x = \sin y \Longrightarrow \frac{\mathrm{d}x}{\mathrm{d}y} = \cos y$	M1	For implicit diffn to $\frac{dy}{dx} = \pm \frac{1}{\cos y}$
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}$	A1	oe For using $\sin^2 y + \cos^2 y = 1$ to
	$\sqrt{1-\sin y}$ $\sqrt{1-x}$		obtain N.B. Answer given
	$+\sqrt{1}$ taken since $\sin^{-1} x$ has positive gradient	B 1	For justifying + sign
		3	
(ii)	f(0) = 0, f'(0) = 1	B1	For correct values
	$f''(x) = \frac{x}{\left(1 - x^2\right)^{\frac{3}{2}}}$	M1	Use of chain rule to differentiate $f'(x)$
	$f'''(x) = \frac{\left(1 - x^2\right)^{\frac{3}{2}} + 3x^2\left(1 - x^2\right)^{\frac{1}{2}}}{\left(1 - x^2\right)^3}$	M1	Use of quotient or product rule to differentiate f " (0).
	(1-x) $\Rightarrow f''(0) = 0, f'''(0) = 1$	A1	For correct values www, soi
	$\Rightarrow \sin^{-1} x = x + \frac{1}{6}x^3$	A1 5	For correct series (allow 3!) www
	Alternative Method: f(0) = 0, f(0) = 1	B1	For correct values
	f'(x) = $\frac{1}{\sqrt{1-x^2}} = (1-x^2)^{-\frac{1}{2}} = 1 + \frac{1}{2}x^2 + \frac{3}{8}x^4 + \dots$	M1	Correct use of binomial
	f "(x) = $x + \frac{3}{2}x^3 + \dots$	M1	Differentiate twice
	$f'''(x) = 1 + \frac{9}{2}x^2 + \dots$		
	\Rightarrow f'(0) = 1, f"(0) = 0, f""(0) = 1	A1	Correct values
	$\Rightarrow \sin^{-1} x = x + \frac{1}{6}x^3$	A1	Correct series
(iii)	$(\sin^{-1}x)\ln(1+x)$	B1ft	For terms in both series to at least x^3
	$= \left(x + \frac{1}{6}x^{3}\right) \left(x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3}\right)$		f.t. from their (ii) multiplied together
	$= x^2 - \frac{1}{2}x^3 + \frac{1}{2}x^4$	M1	For multiplying terms to at least x^3
		A1 A1	For correct series up to x^3 www For correct term in x^4 www
		4	

6(i)	$I_n = \int_0^1 x^n (1-x)^{\frac{3}{2}} dx$	M1	For integrating by parts (correct way round)
	$= \left[-\frac{2}{5} x^{n} (1-x)^{\frac{5}{2}} \right]_{0}^{1} + \frac{2}{5} n \int_{0}^{1} x^{n-1} (1-x)^{\frac{5}{2}} dx$	A1	For correct first stage
	$\Rightarrow I_n = \frac{2}{5} n \int_0^1 x^{n-1} (1-x)^{\frac{5}{2}} dx$	A1	
	$\Rightarrow I_n = \frac{2}{5}n \int_0^1 x^{n-1} (1-x)(1-x)^{\frac{3}{2}} dx$	M1	For splitting $(1-x)^{5/2}$ suitably
	$\Rightarrow I_n = \frac{2}{5}nI_{n-1} - \frac{2}{5}nI_n$	A1	For obtaining correct relation between I_n and I_{n-1}
	$\Rightarrow I_n = \frac{2n}{2n+5}I_{n-1}$	A1 6	For correct result (N.B. answer given)
(ii)	$I_0 = \left[-\frac{2}{5} \left(1 - x \right)^{\frac{5}{2}} \right]_0^1 = \frac{2}{5}$	M1	For evaluating I_0 [<i>OR</i> I_1 by parts]
		M1	For using recurrence relation 3 [<i>OR</i> 2] times (may be combined together)
	$I_3 = \frac{6}{11}I_2 = \frac{6}{11} \times \frac{4}{9}I_1 = \frac{6}{11} \times \frac{4}{9} \times \frac{2}{7}I_0$	A1	For 3 [OR 2] correct fractions
	$I_3 = \frac{32}{1155}$	A1 4	For correct exact result

7(i)	$y = \tanh^{-1}x$ $y = \tanh^{-1}x$ $y = \tanh^{-1}x$ $y = \tanh^{-1}x$	B1 B1 B1 B1	Both curves of the correct shape (ignore overlaps) and labelled gradient = 1 at $x = 0$ stated For asymptotes $y = \pm 1$ and $x = \pm 1$ (or on sketch) Sketch all correct
(ii)	ek ,	4 M1	For substituting limits into ln cosh <i>x</i>
(iii)	$\int_0^k \tanh x dx = \left[\ln(\cosh x)\right]_0^k = \ln(\cosh k)$	A1 2	For correct answer
	Areas shown are equal: $x = \tanh k$ $\Rightarrow y = k$	M1 A1 M1	For consideration of areas For sufficient justification For subtraction from rectangle
	$\Rightarrow \int_0^{\tanh k} \tanh^{-1} x dx$ = rectangle (k × tanh k) – (ii) = k tanh k – ln(cosh k)	A1	For correct answer N.B. answer given Alternative: Otherwise by parts, as $1 \times \tanh^{-1} x$ OR $1 \times \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$

PTO for alternative schemes

7(iii)	Alternative method 1	M1	For integrating by parts (correct
. ()	By parts:		way round)
	$I = \int_{0}^{\tanh k} \tanh^{-1} x \mathrm{d}x$		
	$u = \tanh^{-1} x$ $dv = dx$		
	$du = \frac{1}{1 - x^2} dx \qquad v = x$	A1	For getting this far
	$\Rightarrow I = \left[x \tanh^{-1} x\right]_{0}^{\tanh k} - \int_{0}^{\tanh k} \frac{x}{1 - x^{2}} dx$	M1	Dealing with the resulting integral
	$= k \tanh k + \frac{1}{2} \left[\ln(1 - x^2) \right]_0^{\tanh k}$		
	$=k \tanh k + \frac{1}{2}\ln(1-\tanh^2 k)$		
	$=k \tanh k + \frac{1}{2}\ln(\operatorname{sech}^2 k)$	A1	
	$=k \tanh k + \ln(\operatorname{sech} k)$		
	Alternative method 2 By substitution		
	Let $y = \tanh^{-1} x \Longrightarrow x = \tanh y$	M1	For substitution to obtain
	\Rightarrow dx = sech ² y dy		equivalent integral
	When $x = 0$, $y = 0$		
	When $x = \tanh k$, $y = k$		
	$\Rightarrow I = \int_{0}^{\tanh k} \tanh^{-1} x \mathrm{d}x = \int_{0}^{k} y \mathrm{sech}^{2} y \mathrm{d}y$	A1	Correct so far
	$u = y \mathrm{d}v = \mathrm{sech}^2 y \mathrm{d}y$	M1	For integration by parts (correct way round)
	$du = dy \qquad v = \tanh y$		way toular
	$\Rightarrow I = [y \tanh y]_0^k - \int_0^k \tanh y \mathrm{d}y$		
	$=k \tanh k - \ln \cosh k$	A1	Final answer

8(i)			
	$x = \cosh^2 u \Longrightarrow \mathrm{d}u = 2\cosh u \sinh u \mathrm{d}u$	B 1	For correct result
	$\int \sqrt{\frac{x}{x-1}} \mathrm{d}x = \int \frac{\cosh u}{\sinh u} 2\cosh u \sinh u \mathrm{d}u$	M1	For substituting throughout for <i>x</i>
	$=\int 2\cosh^2 u\mathrm{d}u$	A1	For correct simplified <i>u</i> integral
	$= \int (\cosh 2u + 1) du = \sinh u \cosh u + u$	M1	For attempt to integrate $\cosh^2 u$
		A1	For correct integration
	$=x^{\frac{1}{2}}(x-1)^{\frac{1}{2}}+\ln\left(x^{\frac{1}{2}}+(x-1)^{\frac{1}{2}}\right)(+c)$	M1	For substituting for <i>u</i>
		A1	For correct result
		7	oe as $f(x) + \ln(g(x))$
(ii)		B 1	
	$2\sqrt{3} + \ln\left(2 + \sqrt{3}\right)$	1	
(iii)	$V = (\pi) \int_{1}^{4} \frac{x}{x-1} dx = (\pi) \left[x + \ln(x-1) \right]_{1}^{4}$	M1	For attempt to find $\int \frac{x}{x-1} dx$
	•1 x -1	A1	For correct integration (ignore π)
	$V \rightarrow \infty$	B1 3	For statement that volume is infinite (independent of M mark)